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SUMMARY

A flux-difference splitting type algorithm is formulated for the steady Euler equations on un-

structured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite

volume method is employed on a triangu!ar mesh.

The multigrid method is in defect-correction form. A relaxation procedure with a first order

accurate inner iteration and a second-order correction performed only on the finest grid, is used. A

multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a

Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties.

The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or

less uniform distribution of nodes but with different resolution are generated by successive refinement

of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is

started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement

is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure.

The coarser multigrid grids are generated by successive coarsening through point removement. The

adaption cycle is repeated a few times.

Results are given for the transonic flow over a NACA-0012 airfoil.

THE SPACE DISCRETIZATION

Flux-Difference Splitting

Figure 1 shows part of an unstructured triangular grid. In the vertex-centered finite volume

method nodes are located at the vertices of the grid. Every node has a control volume, constructed

by connecting the centers of gravity of the cells surrounding the node. To close the control volumes

on the boundary, the midpoints of the boundary edges are chosen as vertices of the control volumes.

To define the flux through a side of a control volume, use is made of the flux-difference splitting
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Figure 1: Vertex-centered discretization.

principle. The Euler equations in two dimensions take the form

ou of og
(1)

where U is the vector of conserved variables, f and g the Cartesian flux vectors, given by

pu2PU+p puv
u= ,f = ,g = ,

pv puv pv 2 + p

p E pull pv H

(2)

where p is the density; u and v are the Cartesian velocity components in the x and y directions,

respectively; p is the pressure; E = P/(7 - 1)p + u2/2 + v2/2 is the total energy; H = "/p/("/- 1)p +

u2/2 + v2/2 is the total enthalpy; and _f is the adiabatic constant.

For the side ab of the node i and node j control volumes (figure 1), the flux-difference can be

written as

AF,,j = (nxAA,j + nV_g,,j)As,,j, (3)

where Af,,j and Agi,j denote the differences of the Cartesian flux vectors, nx and n_ are the compo-

nents of the unit normal to the side ab in the sense i to j, and Asi,j is the length of the side. The
differences of the Cartesian flux vectors are

Afi,j = fj - f, , Agi,j = gj - gi, (4)

where fi,gi and f_,g_ are the flux vectors calculated with the flow variables in node i and node j,

respectively.

The flux-difference defined by equation (3) can be written as

AFi,_ = A_,3(Uj - U_)Asi,_ = Ai,jAUi,3Asi,j. (5)
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To define the discrete Jacobian A, the polynomial flux-difference splitting is used. This splitting

technique was introduced by the second author [1]. Full details are given in [2, 3]. The polynomial

flux-difference splitting is a Roe-type technique, i.e. it satisfies the primary requirements formulated

by Roe [4]. However, it is simpler. Its simplicity follows from dropping the secondary requirement

of having a unique definition of averaged flow variables. This secondary requirement defines the

original Roe-splitting within the class of methods allowed by Roe's primary requirements. However,

the secondary requirement is not necessary. The precise splitting used is not really relevant for the

method we describe here. Therefore, we do not detail the method any further. The only important

result is equation (5).

The discrete Jacobian Ai,_ in equation (5) has real eigenvalues that are discrete analogs of the

normal velocity through the side of the control volume, and the normal velocity plus and minus the

velocity of sound. The Jacobian also has a complete set of eigenvectors. These properties are a direct

consequence of the hyperbolic character of the Euler equations with respect to time. The Jacobian

matrix A can be written as

A = R A L, (6)

where A denotes the eigenvalue matrix and where R and L denote the right and left eigenvector

matrices in orthonormal form. The matrix A can be split into positive and negative parts by

A +=RA+L, A-=RA-L. (7)

Upwind Flux Definition

For the side ab of the node i and node j control volumes (figure 1), the first order upwind flux is

defined by

1 ] _

F. 1
i,j _ z

(8)

where

F, = (n=y,+ n_g,)ns,.j, fj = (_xL + _gj)ns,.j.

Using equation (5), equation (8) can be written as

F). = Fi + A_,j AU_,j As_,3. (9)
$,?

This way of writing the flux shows the incoming wave components.

In order to define a second-order flux, the second part in the right hand side of equation (8), which

contains the positive and negative parts of the flux-difference, is decomposed into components along

the eigenvectors of the Jacobian, according to

nF,_j = A_,,,_U,.j _,,j = _ErL _,"._t,_,_nU,.__s,j, (10)
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where r _ and l n are right and left eigenvectors of A associated to the eigenvalue A'_. r n and l n are

components of R and L, respectively. By denoting the projection of AUi,j on the n th eigenvector by

ae.,,s = ln ,,sAUi,j, (11)

the parts of the flux-difference become

n a n.. Asi,j = _ AF n+AF,5= E r,.j ,,, ,.j .
n rg

(12)

The second-order flux is then defined by

F. 2 1 1 1 1_ :n+,,i = (F_ + Fs ) - -_ _ A F_ + +-_ _ A F_- + _ A F,,i - -
rt

1 "=n-

_ AFi,j, (13)
n

:n+

where AF are limited combinations of the flux-difference components AF _± and the shifted differ-

ences AF n+ , in the sense of i for positive components and in the sense of j for negative components.

The limiter used here is the minmod-limiter. The shifted flux-difference components are constructed

based on shifted differences of conservative variables. These are obtained by extending the line seg-

ment i, j into the adjacent triangles and constructing intersections with the opposing sides (point ia

and point jl in figure 1). The shifted flux-differences are defined by

A__+ n _± -n± ,_ n+ l._. A0._ As_ji,j -" ri d )_i,j ai d Asi,j ----. rid Jki, j ,,_ *,3 ' (14)

where AU_,] denotes the shifted differences. The employed technique to define the second-order flux

commonly is called the flux-extrapolation technique. This concept was introduced by Chakravarthy

and Osher [5]. For examples illustrating the quality of this second-order formulation on structured

grids, the reader is referred to [2, 3, 6].

Boundary Conditions

The examples to follow are either channel flows or flows around airfoils. The internal-type flows

have solid, inlet, and outlet boundary conditions. The external-type flows have solid boundaries and

far-field boundaries. Figure 2 gives an example of an external flow. The grid generation is detailed

in a section below. The far-field boundary is a hexagon with sides 100 chord lengths away from the
airfoil.

Inflow and outflow boundary conditions are imposed through the definition of the boundary flux.

The boundary flux is calculated by equation (8) with the flux Jacobian Ai,3 determined with the values

of the variables of the boundary node and the difference AUi,s taken as the difference between values

in the boundary node and in a ficticious node. The variables in this ficticious node are calculated

by the classic extrapolation procedure. At a subsonic inlet, the Mach number is extrapolated while

stagnation conditions and flow direction are imposed. For outflow, the stagnation properties and

flow direction are extrapolated while the Mach number is imposed. -

At solid boundaries, impermeability is imposed by setting the convective part of the flux equal to

zero. Thus a special flux definition is used for the boundary edges of the control volumes of boundary
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Figure 2: Triangulation around an airfoil with a hexagon far-field boundary 100 chords away from

the airfoil. The large distance between boundary and airfoil makes that the airfoil itself is not visible

on this figure.

nodes. For a point on the boundary (i# in figure 1), the flux through the boundary side can be written

as

Foj,-- F_',, (15)

where F_', is the flux calculated with the variables in the node i#, and where the convective part of

the flux is set equal to zero. To give the same appearance to a boundary flux as to an interior flux,

all flux expressions can be written as

F_,, = F_ + A_j AU_,j As_,j + S.O., (16)

where S.O. denotes the second-order correction. For a boundary node the point j does not exist. This

can be introduced by taking the values of the variables in the ficticious node j equal to the values of

the variables in the node i. So, the first order difference of the variables AUij and the second-order

correction term S.O. in the r.h.s, of equation (16) vanish. The matrix A(,_ in equation (16) is then

calculated with the values of the variables in the node i. The impermeability is introduced in the

term Fi. As will be discussed in the next section, the matrix A_j at a solid boundary plays an

important role in the relaxation method, although it is multiplied with a zero term.

For an external-type flow, fluxes through edges on the far-field boundary are defined by equation

(9). The Jacobian is calculated with the values in the boundary node. The values in the fictitious

outside node are taken from the uniform far-field flow. By the flux difference splitting this procedure

is equivalent to the use of Riemann invariants.
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THE MULTI-STAGE RELAXATION METHOD

In our earliermultigrid formulations for steadyEuler equationsusingstructured grids, the Gauss-
Seidelrelaxation method wasalwaysused[2, 3, 6]. Gauss-Seidelrelaxation waspreferredto Jacobi-
relaxation becauseit has much better smoothing properties (effectivenessof the coarsegrid cor-
rection) and much better speedof convergence(effectivenessof the relaxation method itself). For
structured grid applications the sequentialGauss-Seidelrelaxation is very natural. However,it is
not simple to usea sequential relaxation method on an unstructured grid, since this requires the
constructionof paths through the grid. On an unstructured grid, a muchmorenatural method is a
simultaneousmethod insteadof a successiveone. A simultaneousrelaxation method, like the Jacobi
relaxation, also has the further advantage of being easily vectorizable and parallelizable. The only

drawback is that a simultaneous relaxation method, at least in its basic form, is much less effective

than a sequential method.

To repair this, we bring multi-staging into the Jacobi method in the same way as multi-staging

is used for time-stepping methods and we use the optimization results with respect to smoothing

known for time-stepping schemes. This was first suggested by Morano et al. [7], but not worked out in

detail. A more detailed analysis on the possible multigrid performance was made by the authors [8].

We do not intend here to enter a principal discussion on the possibilities of multi-stage Jacobi

relaxation. We only want to illustrate that it can be used and that it is sufficiently effective, certainly

on unstructured grids, to be attractive in a multigrid context. We choose here a priori the defect

correction multigrid procedure as was used in [2, 3, 6]. This means that the second-order part of

the flux (S.O. in equation (16)) is updated only on the finest grid and is frozen on all other grids.

We choose this configuration mainly for simplicity. The inner, multigrid, iteration cycle is then

based on a linear discretization scheme for the partial differential equations. As a consequence of the

linearity, this cycle can be rigorously optimized. The outer, defect correction, cycle does not involve

any parameters and does not require optimization. In the outer cycle, a second-order accurate flux

definition is used. The second-order part of the flux is highly non-linear due to the TVD-limiter.

It is certainly possible to use second-order operators in the multigrid formulation as shown in [7]
and [8], but it is not clear how to optimize. Therefore, the difficulties associated with non-linear

discretization schemes in the multigrid formulation are avoided and only first order discretizations
are considered.

For the time-dependent Euler equations, the first order discrete set of equations associated with
the node i reads

Vol, a_ + _ A_j(U_ - U,)As,,j = 0, (17)
J

where the index j loops over the faces of the control volume and the surrounding nodes and where

Vol_ is the area of the two dimensional control volume. A single-stage time-stepping method with

local time-stepping applied to equation (17) gives

(Vol, 
At,] -U:)+_)-_A,-?(U_ U_)As,,_=O, (18)

J

where the superscript n denotes the time level.
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Using increments 6Ui = U_ +1 - U_, equation (18) is written as

Vol,_ -n '_ A--_ ] eU, -b _ A,,j (U2 - U_ ) s,,_ = O.J

(19)

The Jacobi-relaxation apphed to the steady part of equation (17) reads

y] A:j(U'_ - U"+I_As =i J i,j O. (20)

Using increments 6Ui = U_ + a - U_, this gives

(- _ A_jAsij) 6Ui + _ A_(U_ - U'_i)As,d = 0.3J (21)

The 4x4 matrix coefficient of 6Ui in equation (21) is non-singular. In equations (18) to (21), the

matrices A_,3 are at the time or relaxation level n. The difference between (single-stage) Jacobi

relaxation equation (21) and single-stage time-stepping equation (18) is seen in the matrix coefficient

of the vector of increments 6Ui. In the time-stepping method, the coefficient is a diagonal matrix. In

the Jacobi method, the matrix is composed of parts of the flux-Jacobians associated with the different

faces of the control volume. The collected parts correspond to waves incoming to the control volume.

In the time-stepping, the incoming waves contribute to the increment of the flow variables all with

the same weight factor. In the Jacobi relaxation the corresponding weight factors are proportional

to the wave speeds. As a consequence, Jacobi relaxation can be seen as a time-stepping in which all

incoming wave components are scaled to have the same effective speed. This is very important for

the optimization in the sequel.

For a node on a solid boundary, an expression similar to equation (21) is obtained provided that

for a face on the boundary the flux expression of equation (16) is used and that the difference in the

first order flux-difference part is introduced as U_ - U_ +1 ,( similar to the term U_ - U_ +1 which is

used for a flux on an interior face). In order to avoid a singular matrix coefficient of the vector of

increments in equation (21), this special treatment at boundaries is necessary. A boundary node can

then be updated precisely in the same way as a node in the interior.

To bring in multi-staging is now very simple. For instance, a three-stage Jacobi relaxation is given

by

Vo=V 
U1 = Uo+al ,SU:
U2 = uo+ 26U:

u3 = Uo+ 0 36Ug

= U3,

with

-- Ai,jAsi, j

J
= = _ AijAU_,3Asi, _. (22)
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The parameters_1,_2and _3 are to be chosen.The increment 5U_ is obtained from the single-

stage Jacobi relaxation method. The method is converted to a multi-stage time-stepping if 5U_ is

replaced by the increment obtained from the single-stage time-stepping method with CFL-number

equal to 1. In the sequel, we use the optimization results obtained by Van Leer et al. [9]. For three-

stage relaxation, the parameters are _1 --- 0.1481 c_3, _2 -- 0.40 _3 and a3 -- 1.5. Since by the Jacobi

relaxation all wave components are scaled to have the same speed, the tuning of the smoothing is

correct for all wave components.

To illustrate the performance of multi-stage Jacobi relaxation, we consider a test problem in which

no adaption is used. Figure 3 shows the test geometry discretized with two unstructured grids with

10557 and 2657 nodes. The grids have a more or less uniform distribution of the mesh size. Two

coarser grids (not shown) with 683 and 182 nodes are also used. The bump has a height of 4% of its

chord. The channel height is equal to the bump chord.

Figure 4 shows the iso-Mach line results obtained for a transonic case with an outlet Mach number

of 0.79 and for a supersonic case with inlet Mach number of 1.4

Figure 5 shows the convergence history. A full multigrid method with W-cycles is employed.

The calculation starts from uniform flow on the coarsest grid. On each level one three-stage Jacobi

relaxation is done. One Jacobi stage and one residual evaluation for all nodes on the finest grid, are

both counted as one work unit. The corresponding work on a coarse grid is counted proportional to

the number of nodes on that grid. A second-order correction is also counted as one work unit. The

work associated to intergrid transfer is neglected. Coarse grid points also appear in the finer grids.

So injection is used for function value restriction. Defect restriction is obtained through weighting

by

Vol ,='2 n j

where the node i on the finer grid corresponds with the node i' on the coarser grid and where j loops

over the n neighboring nodes of i. P_ stands for the residual as given by equation (22) and Voli is

the volume of the control volume. The prolongation is constructed by direct transfer of the coarse

grid correction to the corresponding points in the finer grid. Fine grid points that do not correspond

to a coarse grid point are given a correction value based on an average of the corrections at the

neighboring nodes that do appear on the coarser grid.

The convergence history of the maximum residual is shown in figure 5. The convergence rate is

about one order of magnitude per 250 work units. This is an acceptable performance. The best

convergence rate on structured grids using Gauss-Seidel relaxation on comparable problems is about

one magnitude per 50 work units [2, 3, 6, 10]. Due to the use of a Ganss-Seidel type smoother the

convergence rate in the structured case is better.

THE MESH GENERATION

The automatic triangulation of an arbitrary set of points can be achieved using Delaunay trian-

gulation. Robust algorithms to construct this triangulation in 2D are available.
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Figure 3: Top : Unstructured grid with 2657 nodes; Bottom : Finest grid with 10557 nodes.

Figure 4: Iso-Mach lines calculated for the transonic test case Mach 0.79 (top) and the supersonic

test case Mach 1.4 (bottom). Iso-mach lines per 0.02. Defect correction result with minmod-limiter.
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Figure 5: Convergence behaviour for the second-order defect correction scheme (TVD minmod-

limiter) using three-stage Jacobi relaxation. Transonic (T) and supersonic (S) test cases.

The grid generator is built with two basic algorithms. The first one is based on the advancing

front method, developed by Tanemura et al. [11], simplified to work on a set of nodes which are

already connected. The nodes have to lie on the boundary of a polygon. With this algorithm a

given, not necessarily convex, polygon can be triangulated. No extra nodes are added. The result

is a constrained Delaunay triangulation of the given polygonal boundary. This algorithm was used

for the generation of the initial triangulation of the domain. The domain was defined by discretizing

the boundaries based on local curvature and local grid spacing.

The second basic algorithm used in the grid generation allows the addition of a node to an existing

triangulation. The new node is connected to three or four existing nodes: three nodes if the new

node lies inside a triangle, four nodes if the new node lies on an edge. The triangulation is made

Delannay by the use of a diagonal swapping algorithm [12].

For a sequence of multigrid grids, our formulation of the intergrid transfer operators demands

that a node of a coarse grid appears in the finer grids. Two strategies can be used to satisfy this

condition. A sequence of grids can be constructed by refining a coarse grid (adding nodes), or by

coarsening a fine grid (deleting nodes). To add a node t0 a triangulation the second basic algorithm

is used. To delete a node, the node (together with all the connected edges) is removed from the

triangulation and then the remaining cavity is retriangulated using the first basic algorithm.

To allow stretching in the construction of the grid, the above described Delaunay triangulation is

performed ina transformed sp-ace. Every no-de has it's own transformation parameters, (0, sx,, sv,).

The transformation is a rotation over the angle 0, followed by a rescaling of the new x' and y' axes

by sx, and s_,. The criteria by which the Delaunay triangulation is built are based on transformed

properties.

For the first test case, the bump in a channel of figure 3, multiple grids are built from coarse

to fine by adding nodes. An initial grid is generated based on the discretization of the boundary.
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Transformation parameters are calculated from boundary mesh spacing and boundary edge direction.

The initial grid is refined to form the coarsest grid in the computation. Interior nodes are added in

the middle of selected edges, until all edges satisfy an edge length criterion in the locally transformed

space. Finer meshes are generated by taking a smaller value of the threshold on the edge length.

The final mesh is smoothed, moving all the nodes of all the grids. It is possible that by this

smoothing the triangulation is no longer Delaunay. Therefore, an edge swapping algorithm is used

to restore the Delaunay property on all the grids.

For the second test case, the NACA-0012 airfoil, the first multigrid sequence is built in the same

way. Then a solution is determined. A new mesh is now generated based on flow adaptive refinement,

in which three refinement criteria are used. The first criterion is based on the pressure difference

over an edge. If [p_ -p_[L_,j >_ Lrel [Pmax -pm_,.,[/Cp, then the edge i,j is refined by placing a new

node into the center of the edge. In this formulation p_ is the pressure at node i and Li,j is the length

of the edge. The variables at the right hand side are minimum or maximum values taken over all

the nodes. L,._ I is a problem dependent reference length and Cp is the sensitivity constant for the

pressure criterion. This criterion triggers shockwaves and stagnation regions. The second criterion is

based on the entropy difference over an edge. It is similar to the first criterion, however p is replaced

by the entropy s. This criterion triggers shock waves and tangential discontinuities. Further, edges

are refined where the flow passes through Mach number equal to 1 from supersonic to subsonic flow.

This criterion also triggers shock waves.

The adaptively refined mesh can be included directly in the multigrid sequence but large parts of

the mesh might coincide with the next coarser mesh. This results in a degradation of the multigrid

performance. Therefore, it is better to generate coarser meshes by coarsening the new mesh. The

simple criterion, removing a node only if no neighbors of this node are removed, is used. The number

of nodes is decreased by roughly 1/4 by doing this. This coarsening is repeated twice to get a coarser

mesh.

MULTIGRID RESULTS USING ADAPTIVITY

Starting from the grid shown in figure 2, two successive stages of refinement were done using a

threshold value on the edge length in the locally transformed space. Figure 6 shows part of the final

grid generated this way. On this grid a solution is calculated using multigrid. By the use of the

foregoing adaption criteria, this mesh is refined. Three coarser grids are generated from this grid

with the above described coarsening procedure. A solution is calculated using the four grids. The

adaption is repeated three times. The solution on-the final mesh is given in figure 7 in the form of

iso-Mach lines. The NACA-0012 profile has an angle of attack of 1.25 degrees and the Mach number

of the incoming flow is 0.80. In total, 4 fine meshes (with for every fine mesh 2 or 3 coarser meshes)

were used with 1302 (figure 6) (594,300), 2243 (1256,720,421), 2834 (1577,911,522), 3236 (figure 7)

(1782,1010,580) nodes. Figure 8 shows the final grid structure in the shock regions. Figure 9 shows

the final grid structure in the leading edge and the trailing edge regions. The refinement of the fourth

grid is shown in the left part of figure ?? where only the edges selected for refinement are shown.

The right part of figure 10 shows the pressure distribution over the airfoil.
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Figure 6: Left: First grid (1302 nodes), Right: Iso-Mach lines per 0.02.
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Figure 7: Left: Fourth and final grid (3236 nodes), Right: Iso-Mach lines per 0.02.
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Figure 8: Exploded view of the final grid, shock regions.
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Figure 9: Exploded view of the final grid. Left • Leading edge region; Right • Trailing edge region.
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Figure 10: Left • Edges selected for refinement from third to fourth grid; Right : Pressure distribution
over the airfoil.
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Figure 11: Convergence behaviour for the second-order defect correction scheme ( TVD minmod

limiter) on the NACA-0012 test case, using three-stage Jacobi. Logarithm of the residual as function

of local work units. Multigrid with fine grids 1302 (a), 2243 (b), 2834(c), and 3236 (d) nodes.
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Figure 11 shows the convergence behaviour. For each multigrid phase, the work unit is defined

based on the number of nodes in the finest grid during this phase. This way of representing the

convergence is chosen to demonstrate the mesh independency of the convergence.
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